
NASA Langley originally released the 2019 UQ Challenge problem in only native MATLAB
code. Since this initial release, we have received a few requests for alternate implementations of
the challenge software. Previously, we released a limited “standalone” version of the 2019 UQ
Challenge problem software developed using the MATLAB Compiler to create a runtime version
of the challenge code. The latest release is a fully “standalone” version of the 2019 UQ
Challenge problem software and does not depend on Matlab libraries. This version of the
challenge code can be run from any shell, or called from other languages, such as python. We
only support MacOS and Linux. NO windows support is currently planned. Windows users are
encouraged to work with the Native Matlab version originally released.

Usage example:

uqsim 7 aleatory.dat epistemic.dat design.dat

Most inputs and all outputs are passed via ascii text files. The first input, casenum, is an
integer between 1 and 7 and defines which outputs are computed (see below).

Input files:

• aleatory.dat
• epistemic.dat
• design.dat

aleatory.dat Datafile containing the realizations of the aleatory variables. Each realization
contains 5 floating point numbers.

epistemic.dat Datafile containing the realizations of the epistemic variables. Each realization
contains 4 floating point numbers.

design.dat Datafile containing the realizations of the design variables. Each realization contains
9 floating point numbers.

See the included MATLAB file: make_data.m for an example of generating datafiles with the
required format necessary to run the standalone version of NASA UQ Challenge 2019.

Casenum: Datafile containing a single integer value between 1 and 7.

Usage of the casenum is fully defined in the table below.

Casenum Action Result: computes
realizations of

1 calls: yfun.m uncertain subsystem, y(a,e,t)
2 calls: zfun.m integrated system, z1(a,e,q,t),

z2(a,e,q,t)
3 calls: gfun.m requirements vector g(a,e,q)

4 calls: yfun.m and zfun.m y and z using a single system
command

5 calls: yfun.m and gfun.m y and g using a single system
command

6 calls: zfun.m and gfun.m z and g using a single system
command

7 calls: yfun.m, zfun.m, and
gfun.m

y, z, and g using a single
system command

Output files:

yout – response of uncertain subsystem, y(a,e,t), dimensions (5001 x 1)
z1out – response of integrated system, z1(a,e,q,t), dimensions ((5001 x 1)
z2out – response of integrated system, z2(a,e,q,t), dimensions (5001 x 1)
gout – requirements vector g(a,e,q), dimensions (1 x 3)

The time vector file, previously called “tout”, is no longer written to disk. Please create the time
vector with T_initial=0, delta_T=0.001, and T_final=5. This will result in a vector with
dimensions (5001 x 1). This is the time vector used internally for all simulations. A sample
“tout” file is provided in the zip files below.

Python usage:

Python usage example script: see the included file “test.py” for an example of usage within
python. Note this was only tested with python 2.7.

To run using python, use: python test.py

