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Overview
• Introduction 
• Problem statement
• Summary of responses
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Motivation to NASA
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• UQ need: NASA missions often involve the design of 
new vehicles and systems that operate in harsh 
domains under a wide array of operating conditions

• UQ challenges: Missions involve high-consequence, 
safety-critical systems for which data is either very 
sparse or prohibitively expensive to collect

• NASA modeling and simulation standards require UQ



UQ Challenge: Agenda
• 01/2013: 100+ UQ experts were invited to 

participate. Eleven groups from the US government, 
industry and academia accepted the invitation

• 10/2014: Papers compiled in a special UQ edition of 
the AIAA Journal of Aerospace Information Systems
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Organization Title Authors
1 Sandia National Labs UQ methods for model calibration, 

validation and risk analysis
C. Safta, H. Najm, B. Debusschere, 
K. Sargsyan, K. Chowdhary, M. 
Eldred, L. Swiler

2 Los Alamos National Lab Robust design applied to the NASA  
Langley UQ challenge

Kendra Van Buren, Francois Hemez

3 Ecole Centrale
Paris/Supelec

Uncertainty and sensitivity analysis of 
the mathematical model of a… 

Nicola Pedroni, Enrico Zio

4 Swiss Federal Institute of 
Technology

The Bayesian multilevel framework for 
the NASA multidisciplinary…

Joseph Nagel

5 Stinger and Ghaffarian
Technologies

Subjective approach to UQ: solution to 
the NASA UQ challenge

Shankar Sankaraman

6 Institute for Risk and 
Uncertainty, U. Liverpool

An integrated and efficient numerical 
framework for UQ…

Edoardo Patelli, Mateo Broggi,
Marco de Angelis

7 University of Florida Prioritized information based UQ: the 
NASA UQ challenge…

A. Chaudhuri, G. Waycaster, N. 
Price, T. Matsumara, C. Park, R. 
Haftka

8 Vanderbilt University Bayesian method framework for 
multidisciplinary UQ and optimization

Chen Liang, Snakaran Mahadevan

9 University of Southern 
California & Sandia 
National Labs

A probabilistic approach to the NASA 
Langley multidisciplinary UQ…

R. Ghanem, H. Meidani, E.
Kalligiannaki, C. Thimmisetty, V. 
Keshavarzzadeh, I. Yadegaran, et. al

10 General Electric Global 
Research

A hybrid Bayesian solution to the NASA 
Langley multidisciplinary UQ

Ankur Srivastava, Arun
Subramaniyan

11 Southwest Research 
Institute

A Bayesian probabilistic treatment of 
multiple uncertainty types

John McFarland, Barron Bichon, 
David Riha
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UQ Challenge: Physical System

• Dynamically scaled, highly instrumented flight test article
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Generic Transport Model

UQ Challenge: Model
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UQ Challenge: Model
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• Aleatory uncertainty     vs.     Epistemic uncertainty

• Philosophical distinction must impact the mathematics
• Substantive qualitative implications
• As more knowledge on the epistemic uncertainty is 

acquired what will this uncertainty would reduce to?

Uncertainty Classification

Caused by intrinsic 
variability, 
irreducible

Caused by ignorance, 
reducible
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• Aleatory uncertainty
– Modeled as a random variable 

• Epistemic uncertainty
– Modeled as an unknown constant in an interval

• Mixed uncertainty
– Modeled as a distribution-fixed pbox

Uncertainty Classification
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Subsystem 1 Subsystem 2

Framework
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Framework

• Uncertain parameter,              : actuator failure, loss of 
control effectiveness, control surface dead-zone, and 
desired range of operating conditions 

• Intermediate variable,            : angle of attack command, 
control effectiveness of control surfaces, time delay 

• Design variable,               : controller gains
• Performance metrics,             : stability, angle of attack-, 

roll- and sideslip-tracking, response surface activity

Subsystem 1 Subsystem 2
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Information Provided

• An uncertainty model (UM) for p
– Type 1: aleatory, e.g.  p1 = a1 = N(1, 2) 
– Type 2: epistemic, e.g., p2= e1 = [1, 5] 
– Type 3: mixed, e.g., p3 = N(e2, 1) where e2 = [1, 3]

Subsystem 1 Subsystem 2
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Information Provided

Subsystem 1 Subsystem 2

e1

e2

The more ignorance the 
larger the epistemic box

• An uncertainty model (UM) for p
– Type 1: aleatory, e.g.  p1 = a1 = N(1, 2) 
– Type 2: epistemic, e.g., p2= e1 = [1, 5] 
– Type 3: mixed, e.g., p3 = N(e2, 1) where e2 = [1, 3]
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Information Provided

Subsystem 1 Subsystem 2

• An uncertainty model (UM) for p
– Type 1: aleatory, e.g.  p1 = a1 = N(1, 2) 
– Type 2: epistemic, e.g., p2= e1 = [1, 5] 
– Type 3: mixed, e.g., p3 = N(e2, 1) where e2 = [1, 3]

• Computational model for both subsystems
• Observations of the “true” x1
• A baseline design d
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• The mean:                              .

• The probability of failure: 

Subsystem 1 Subsystem 2

Metrics of Interest
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Subsystem 1 Subsystem 2

Subsystem 1 Subsystem 2

Ø Metrics of interest vary in a range

Metrics of Interest



Tasks

1. Model calibration
2. Global sensitivity analysis
3. Uncertainty propagation
4. Extreme case analysis
5. Robust design

21



22

Task 1: Model Calibration

• Given an UM of p and observations of x1 refine the UM

Subsystem 1 Subsystem 2
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Task 2: Global Sensitivities

• Rank the parameters in p according to the sensitivity of a 
few metrics of interest

Subsystem 1 Subsystem 2

[ ]

[   ]

J1

J2

e1

e2

e1

e2
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Task 3: Uncertainty Propagation

• Find range of J1 and J2 for original UM

Subsystem 1 Subsystem 2

[ ]

[   ]

J1

J2
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• Find range of J1 and J2 for original UM
• Why would the range could be inadmissibly wide?

Subsystem 1 Subsystem 2

Task 3: Uncertainty Propagation

[ ]

[   ]

J1

J2
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• Find range of J1 and J2 for original UM
• Why would the range could be inadmissibly wide?

– UQ methods are conservative
– Epistemic uncertainty is too large 
– The design point d is not sufficiently robust

Subsystem 1 Subsystem 2

Task 3: Uncertainty Propagation

[ ]

[   ]

J1

J2



27

• Find range of J1 and J2 for original UM
• Why would the range could be inadmissibly wide?

– UQ methods are conservative
– Epistemic uncertainty is too large 
– The design point d is not sufficiently robust

Subsystem 1 Subsystem 2

Task 3: Uncertainty Propagation

Ø Which epistemic uncertainties to refine given limited resources?

[ ]

[   ]

J1

J2
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Subsystem 1 Subsystem 2

[ ]

[   ]

J1

J2

Sensitivity analysis

Task 3: Uncertainty Propagation

Team
D U

Chooses 4 out of 
17 parameters for 
refinement
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Subsystem 1 Subsystem 2

[ ]

[   ]

J1

J2

Sensitivity analysis

Task 3: Uncertainty Propagation

Team
D U

Chooses 4 out of 
17 parameters for 
refinement

Refined UM for 
4 parameters 
are provided
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• Find range of J1 and J2 for original UM
• Decide which parameters to refine
• Find range of J1 and J2 for refined UM

Subsystem 1 Subsystem 2

Task 3: Uncertainty Propagation

[ ]

[   ]

J1

J2

Ø Refinement of UM might not pay off 
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Task 0: Mathematical Framework

• Probabilistic
• Info-gap theory
• Random set theory 

– Random variables (RV)
– Intervals 
– Distribution-free pboxes
– Distribution-fixed pboxes

• Method-dependent
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Task 1: Model Calibration

Subsystem 1

• Problem: dim(e)=8, dim(x1)=1 output, CPU time=1s
• Solution strategies

– Bayesian calibration with MCMC [1,6] 
Ø KDE or full likelihood and binning
Ø Approximate Bayesian Computation (2 orders of mag better) 

– KS-based approaches for comparing empirical CDFs [3,7]

x1
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Task 1: Model Calibration

Refined UM [1]
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Task 1: Model Calibration

Posterior marginals [1]
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Task 1: Model Calibration

Subsystem 1

• Comments on Bayesian Calibration
– Higher fidelity of refined UM 
– Are the dependencies among parameters fictitious?  
– Reclassification of UM: intervals/independent RVs/dependent RVs
– Refined UM for n=50      refined UM for n=25
– Setup: nsteps:[5K, 500K], na:[5K, 100K], CPU time:[5h, 96h]

x1
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Task 2: Global Sensitivities

Subsystem 1 Subsystem 2

[ ]

[   ]

J1

J2

• Solution strategies
– Reduction in epistemic range of a metric of interest 

caused by fixing the value of an epistemic parameter [3,6]
– ANOVA: first-order sensitivity index and total-effect index

• What are the dependent and independent variables?
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Task 2: Global Sensitivities

Subsystem 1 Subsystem 2

[ ]

[   ]

J1

J2

• Independent variable
– Epistemic variable being a fixed unkown constant
– Limit of the range of variation of epistemic variable 

• Dependent variable
– Area of the x1-pbox
– Average over selected quantiles of the x1-pbox [11]
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Task 2: Global Sensitivities

Source of approximation error

Subsystem 1 Subsystem 2

[ ]

[   ]

J1

J2

Metamodel

• Independent variable
– Epistemic variable
– Limit of the range of variation of epistemic variable 

• Dependent variable
– Area of the x1-pbox
– Average over selected quantiles of the x1-pbox [11]
– J1 and J2 after using a metamodel (PC, GP, NN) for Subsystem 2
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Task 2: Global Sensitivities

Subsystem 1 Subsystem 2

[ ]

[   ]

J1

J2

• Independent variable
– Epistemic variable
– Limit of the range of variation of epistemic variable 

• Dependent variable
– Area of the x1-pbox
– Average over selected quantiles of the x1-pbox [11]
– J1 and J2 after using a metamodel (PC, GP, NN) for Subsystem 2

• ANOVA setup: ne: [0.5K, 5K], na: [1K, 5000K]

Metamodel
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Task 2: Global Sensitivities

Considerable variation in figures of merit thus in ranking
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Task 2: Global Sensitivities
Dominant 4 parameters from all teams
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Subsystem 1 Subsystem 2
[ ]

[   ]
J1

J2

Task 3: Uncertainty Propagation

• Solution strategies
– 2-level epistemic – aleatory

Ø Aleatory loop: na : [0.1K, 10K] 
Ø Epistemic loop by sampling (ne : [0.5K, 5K]) or optimization (GA) 

– 2-level aleatory – epistemic 

• Cascading effect: results depend on the methods, numerical 
setup and decisions made upstream: calibration strategy, 
sensitivities, chosen parameters, and propagation method, etc.

Metamodel
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Subsystem 1 Subsystem 2
[ ]

[   ]
J1

J2

Task 3: Uncertainty Propagation

w
J1

J2 is the colored area

Ø Small na leads to the underestimation of J1: critical info missing

Metamodel
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Task 3: Mean Value J1



Range of J1 before refinement
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Task 3: Mean Value J1

�rMode missed when na is small
�rSmaller ranges are not better
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Task 3: Failure Probability J2



Observations & Recommendations 
• UQ Method verification: perform convergence studies
• Global sensitivities for different metrics are different
• Refine epistemic uncertainties in series: do full loop
• Beware of the cascading effect
• What is the approximation error of a surrogate model?
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• Thanks to respondents
• Challenge was an end-to-end UQ problem replicating 

situations commonly found in practice
• Challenge aimed at breaching the gap between philosophy 

and mathematics of dealing with epistemic uncertainties
• Responses by UQ experts illustrate the state of the practice 
• A considerable spread in the results observed
• Key UQ needs are not fully addressed by existing methods  
• Further R&D needed
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Observations & Recommendations 



Conclusions
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• Underestimation might lead to the wrong decision
• Overestimation might prevent making a decision 
• State of knowledge might lead to wide predicted ranges

- The UQ analyst does not need to apologize!!
• Decision maker should accept an inconclusive state
• Means to narrow the predicted uncertainty ranges  

- Refine epistemic UM: resources required
- Use robust design 

• UQ analyst vs. decision maker 
- UQ analyst: ask for resources, know what to ask for
- Decision maker: challenge the UM, provide resources 

• Good engineering must have precedence over the urgency 
of having to make a decision
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